& AD=A060 380 MARYLAND UNIV COLLEGE PARK COMPUTER SCIENCE CENTER F/6 9/4

' CELLULAR GRAPH ACCEPTORS, 5: CLOSURE PROPERTIES OF CELLULAR D-G—-E'I’C'IU)
JUL 78 A WU AFOSR=77-3271

UNCLASSIFIED TR=681 _ AFOSR-TR-78-1372 NL

| o |




AFOSR-TR- «8 - 1 372, lEv‘\:ﬂ,i ; £

ADAQ0 60380

DOC FiLE copy

4

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND
20742 DDC

e
16 135 CEIUT

Approved for pudlie release;
distriputien unlimited,

I8 2N




ATR ¥9,07 (TUVSH OF FCIINTIVIC 2I5LIRCH (APSC)
RGEX 5 57 5000005\ T0 DOO

TS Loclsbud dipest has been reviewed and is
épproved for public release 1AW AFR 190-12 (7b).
Distribution is unlimited,

A. D. BLOSE : -

Technical Information Offiger

neac of

J———

N




I T a——erpee

11T

P i

SISTRIOTION/AVAILABILITY So00s
e em—— e -
el AVAIL and)w SPRGIAL

4

ADAO60380

T

T
o
(-
O
wl
)

g o

C=
=
=

TR- 681 July 1978
AFOSR-77-3271 792
CELLULAR GRAPH ACCEPTORS, 5:
CLOSURE PROPERTIES OF
CELLULAR d-GRAPH LANGUAGES

Angela Wu
Computer Science Center
University of Maryland
College Park, MD 20742

ABSTRACT

Cellular d-graph languages are shown to be closed
under set theoretic operations, including finite union
and intersection; and under "geometric" operations,
including permutation of arc end numbering, concaten-
ation, closure, and formation of line graphs. Deter-
minism is preserved under the set-theoretic operations;
but under the geometric operations, determinism is
known to be preserved only when the languages are also
predicates.

The support of the U.S. Air Force Office of Scientific

Research under Grant AFOSR:-77-3271 is gratefully acknow-
ledged, as is the help of Kathryn Riley in preparing this
paper.

DISTRIBUTION STATEMENT A_

Approved for public relcase;
Distribution Unliinited

DD C

N e

0CT 26 1978




AN A ST, . D S BTN W o SN B 7 4 18 e $

1. Introduction

Cellular d-graph acceptors were defined and studied in
[1-4]. Given a cellular d-graph acceptor M = (I',M,H) with a
distinguished node having a special mark, we say that M
accepts I' if the automaton at the distinguished node enters
a final state after finitely many steps. For a given finite
state automaton M = (QI,Q,G,F), where § is a function from
Q x o x Qd into Q, D = {1,2,...,d}, let C(M) = {M|M=(T,M,H)

is a cellular d-graph acceptor with a distinguished node}

be the class of cellular d-graph acceptors determined by M.

Whenever no confusion can arise, we shall refer to C(M) as

the cellular d-graph acceptor of M. The language of d-graphs

accepted by C(M) is the set L(M) = {I'|M=(I,M,H)€C(M) accepts

r'Y. A d-graph T is accepted by C(M) iff. Tre€L(M). The class

of languages accepted by (deterministic) cellular d-graph
acceptors is called the class of (deterministic) cellular

d-graph languages, (D)CdL.

If we call the final states F of M accepting states and

in addition M has another special subset R of states such that

R<Qand R NF = @ called the rejecting states, M in this

case is denoted by a 5-tuple (QI,Q,G,F,R). We say that
M=(l',M,H) rejects I' if the automaton at the distinguished
node enters a rejecting state after finitely many steps.
Let L'(M) = {I'|M=(r,M,H) €C(M) rejects I'}. A d-graph I is

rejected by C(M) iff. TreL'(M). C(M) recognizes a d-graph




language L iff. C(M) accepts every d-graph T€L and C (M)
rejects every d-graph I'gL. L is sometimes called a cellular

d-graph predicate, and C(M) is called a cellular d-graph

recognizer. Every cellular d-graph predicate is a cellular
d-graph language.

g | For any d-graph T', U(l') denotes the underlying graph of
i [, and for any YEGg = {y|y=U(I') for some d-graph I over L},

U-l(Y) = {T|y=U0(I)}. C(M) accepts a node-labelled graph Y

if C(M) accepts some d-graph in U-l(Y). The acceptance is

i strong if C(M) accepts every d-graph in v iy). cm accepts

! (strongly) a language Lcﬂg when yvel iff. C(M) accepts Y

(strongly). C(M) rejects a node-labelled graph y if C (M)

rejects every d-graph in U Y(y). C(M) recognizes a predicate ]
L;Gg iff. C(M) accepts every Y€L and C(M) rejects every
Y£L. The recognition is strong if the acceptance is strong.

It should be pointed out here that "C(M) accepts Y
strongly" means that acceptance by C(M) does not depend on
how the arc ends of y are labelled. However, each transition
of M may depend on the neighbor vector, so that each M=(T,M,H)
for FEU-l(Y) need not be a weak cellular d-graph automaton as
defined in [l1]. Conversely, a weak cellular d-graph automaton
M has a transition function that is independent of the neighbor
vector H, but acceptance of a graph by M may depend on the
numbering of the arc ends; thus the acceptance of the under-

lying graph is not necessarily strong.




In the definition of a cellular d-graph acceptor with
a distinguished node'D, D may be any non-# node of the
d-graph. In fact, in all the cellular d-graph automata
defined in [1-4], the position of D does not affect whether
the d-graph is accepted or not. Of course the speed of
acceptance can depend on where D is placed, for example,
when D is at a central point of the d-graph [4]. 1In this
paper, we are not concerned with speed. We assume that all
the cellular d-graph automata in this paper have a distin-
guished node.

We presented some deterministic cellular d-graph lan-
guages and predicates in [2-4]. 1In this paper we will
investigate closure properties of the cellular d-graph

languages under various set-theoretic and geometric oper-

ations.




2. Set-theoretic operations

Proposition 1: A finite intersection of (deterministic)

cellular d-graph languages (predicates) is a (deterministic)
cellular d-graph language (predicate).

Proot: Let M;,...,M be finite state acceptors such that

the cellular d-graph acceptors C(Ml),...,C(Mn) accept the
CdlL's Ll....,Ln. Define M as follows: the states of M are
n-tuples in le...xQn and the accepting states of M are
le...an where Qi is the state set of M, and F, is the
accepting state set of Mi (lsisn). The components of the
state of M are independent of each other, where the ith
component simulates the change of state as dictated by Mi

and the ith components of its neighbors' states. Whenever
the ith component reaches a final state of Mi' it remains
unchanged, while the other components continue to simulate
the other Mj's. Then C(M) accepts I' iff. each C(Mi) accepts
r iff. F&Lln...nLn. Also M is deterministic iff. every

Mi is deterministic (lsisn). If each Mi is a recognizer of
Li' then M is a recognizer of Llﬂ...ﬂLn provided C(M) rejects
I' as soon as one of the components (say the ith) of the state

of M is in a rejecting state of Mi‘ //

.

Proposition 2: A finite union of (deterministic)

d-graph languages (predicates) is a (deterministic) cellular

d-graph language (predicate).

.-




Proof: Define M' in the same way as M in Proposition 1

except that S = (Sl""'sn) is an accepting state of M' iff.

ER is an accepting state of My for some i, lsisn. If the

Mi's are recognizers, (S .,Sn) is a rejecting state of M'

1".
iff. for every i, lsisn, Si is a rejecting state of Mi' //

Proposition 3: Any singleton {I'} is a deterministic

¢ellular d-graph predicate.

Proof: We can define a cellular d-graph recognizer Mr
which discovers whether a d-graph is isomorphic to U(I') [3],
with the added requirement that Mr further checks the arc
end numberings after isomorphism to U(l') is confirmed. Mr
accepts a d-graph only when all the arc end numberings are

exactly the same as in I', and rejects all other d-graphs.

Clearly MF accepts only I'. //

Proposition 4: Any finite set of d-graphs is a deterministic

cellular d-graph predicate.

Proof: Propositions 2 and 3. //

The set complement of a cellular d-graph language L
is the set of all d-graphs (having the same node label set
as the d-graphs in L) that are not in L. Clearly cellular
d-graph predicates are closed under complementation, but it
is not known if the cellular d-graph languages are.

In graph theory, the complement of a graph G is a graph

having the same nodes as G, and in which two nodes are joined




by an arc iff. they are not neighbors in G. However, the
complement of a d-graph G is not necessarily a d-graph.
In fact, its nodes have degree s (the number of nodes in G)-1,

which is not bounded. Therefore it is not appropriate to

consider complements of d-graphs.




3. Permutation

We next consider some "geometric" operations on cellular

d-graph languages. For any d-graph ', a renumbering of I is

a d-graph obtained by renumbering some (possibly none) or all
of the arc ends of I'; thus it is a d~graph having the same
underlying graph as I'. For any cellular d-graph language L,

the renumbering closure Lp of L is the set of all renumberings

of the d-graphs in L. If the underlying graph of every
d-graph in L is accepted strongly by a cellular d-graph
acceptor, then Lp w L,

Proposition 5: The renumbering closure of a (deterministic)

cellular d-graph predicate is a (deterministic) cellular
d-graph predicate.

Proof: Let C(M) recognize the cellular d-graph predicate

P. Define a finite state recognizer A such that its states
have a component which is a permutation of the numbers
1,2,...,d4, and which is initially (1,2,...,d). This permu-
tation vector is used to implicitly define a renumbering of
the arc ends at a node. Specifically, the vector (jl""'jd)
indicates that the ith arc end is now renumbered as ji'
lsisd. For any d-graph I', A = (I',A,H) can first construct a
depth-first spanning tree to get an ordering of the nodes (4].
Then it can change the permutation vector at each node
systematically using the ordérinq of the nodes. Each

change implicitly represents a new d-graph rl which is a
renumbering of I'. The states also have another component

that stores the nodes' initial states. A restores the

-



T

o Sl i SR

initial states at the nodes of I' and then simulates (Fl,M,H).
1f i1t reaches an acceptance state of M then A accepts I
since I is a renumbering of rl and FleP. Otherwise it
reaches a rejecting state of M, and a change of the permut-
ation vectors is made to give a new renumbering of I', where
again A checks whether (C(M) accepts this new renumbering.

If all the renumberings have been checked and the acceptance
state was never reached, I' is rejected. It is easy to see
that A is deterministic if M is. //

It is not known whether the renumbering closure of a
deterministic cellular d-graph language L is a deterministic
cellular d-graph language. The construction in Proposition
5 does not work when L is not a predicate since for some
renumbering Fl of I', the cellular d-graph acceptor may not
accept Fl, and may not stop; thus it is not possible for A

to test all the other renumberings which may be in L.

Proposition 6: The renumbering closure of a cellular d-gqraph

language is a nondeterministic cellular d-gqraph lanauaae.
Proof: Define A' in the same way as A in Proposition 5
except that A' is nondeterministic, so that after getting a
new numbering, A' = (I',A',H) can start simulating (Fl,M,H)
or can change to the next new numbering. Thus A' accepts T

iff. one of the renumberings of I' is in L iff. T is a

renumbering of a d-graph in L. //




e

A renumbering is a permutation of the arc end numberings.
We can also consider permutation of node labels. As in the
proof of Proposition 5, we can order the nodes and then
systematically test every permutation of their labels, so
that this closure too is a deterministic cellular d-graph

predicate. Another kind of permutation we can consider is

permutation of the nodes. However, the resulting d-graph
is just an automorphic image of the original one, and so

is not distinguishable by a cellular d-graph automaton.




s |

4. Concatenation and closure

Let there be given two d-graphs Fl,Fz, where both Fl and

Fl have a # node. A concatenation of Fl and Fz, denoted by

F1°F2, is a d-graph obtained by performing the following

operations: (1) delete the two # nodes n,.,n, and the arcs
(nl,ml), (nz,mz) joining n;,n, to their neighbors m, ,m, in
Fl’FZ' respectively; (2) connect Fl and F2 with a new arc
(ml,mz); and (3) assign the numberings of the arc ends
(ml,nl), (m2,n2) to the ends of this new arc at nodes m, ,m,.
If one of the d-graphs does not have any # nodes, then con-
catenation is not defined.

Two d-graphs may have many different concatenations, since
each of them may have more than one # node, and there is a
concatenation associated with each pair of # nodes of Fl and

FZ. For example, if

B

then




i By S R

are both concatenations of Fl and FZ.
It should be pointed out that if {rl-rz} denotes the
}e

set of all concatenations of Fl and I', then (rl-rz} = {r2 r

2 1
However, associativity does not hold, i.e. {(rl-rz)-r3} #
{ry*(I'y+Ty)}, since
t{(l‘ I‘)F}butﬁ{l‘l(l )}
and if both l and F2 have only one # node, and F3 has at
least two # nodes then {(rl-rz "'y} is empty but {ry=(ry-ryl

is not empty. We denote by Fl'Pz ‘...'Fn the set of d-graphs
resulting from taking the concatenation of the n given
d-graphs in any associative order. For example, {FI-FZ-F3} -
{Fl'(Fz'F3)} U {(rl-rz)-r3}.

The new arc joining I'; and FZ is always a bridge in

1
F1°F2, and it is called a concatenative bridge. Not every

bridge in F 2 is a concatenative bridge, since ‘1 and P2

may themselves have bridges.




s M | i 0

For any cellular d-graph language L, the closure 'l

of L is the set of all concatenations of d-graphs in L,

. + X
. R {Fl-Fz-...-Fnlnzl, FieL for lsisn}.

Proposition 7: The closure LY of a (deterministic)

cellular d-graph predicate L is a (deterministic) cellular

d-graph predicate.

Proof: 1In [4] it was shown that there exists a deter-

ministic cellular d-graph automaton which identifies all

the bridges of a d-graph and always terminates. Define a ‘
cellular d-graph recognizer M with a distinguished node D

such that for any d-graph I', it identifies all the bridges,

and also gives an ordering to the bridges. Each bridge may

or may not be a concatenative bridge. M can systematically '
consider different subsets of the set of bridges as concat- \
enative bridges. For each subset of bridges of size k,

0skst (=the number of bridges in I), if each bridge end-node

treats the neighbor at the other end of the bridge as a #

node, then I' is implicitly decomposed into k+1 components.

Let D, together with the bridge end-node further away from

D in a breadth-first spanning tree, be the distinguished

nodes of the components that they lie in. (Note that each

component has only one distinguished node.) M can then test

to see whether each component belongs to L. As soon as

either component is rejected, M restores the initial states

3

PR O ST P T




of the nodes and proceeds to check another subset of bridges.
M accepts I' if it succeeds in finding a set of bridges such
that all the components are in L. If all 2% sets of bridges
are checked without success, M rejects I'. Clearly M is
deterministic if L is. //

Proposition 8: The closure er of a cellular d-graph lan-

guage L is a nondeterministic cellular d-graph language.
Proof: Define a cellular d-graph acceptor A similar to

M in Proposition 7 except that each time a subset of bridges
is identified, A can nondeterministically choose to check

if the components are in L, or can go on to test another

set of bridges. //

The concatenation of the cellular d-graph languages

Ll,Lz,...,Lk is the set of d-graphs Ll.Lz."'.Lk =

(r‘l-l‘z-...-lkll‘itLi, 1sisk}.

Proposition 9: A concatenation of (deterministic) cellular

d-graph predicates is a (deterministic) cellular d-graph
predicate.

1,...,L2 be cellular d-graph predicates.

The proof is analogous to that of Proposition 7, except that

Proof: Let L

now M decomposes ' into exactly k components, and for each
subset of k-1 bridges, M systematically tests the k! ways
that the components can be in Ll""'Lk' since the ordering

of the bridges gives an ordering of the components. //




Proposition 10: A concatenation of cellular d-graph

languages is a nondeterministic cellular d-graph language.
Proof: The proof of Proposition 9 can be modified the same
way as in Proposition 8. //

We do not know whether closures or concatenations of
deterministic cellular d-graph languages, which are not

predicates, are deterministic cellular d-graph languages.




5. Line graphs

The line graph of a graph G, L(G), is the graph obtained

by creating a node for each arc of G and joining together

5 e i gt 2

those nodes corresponding to arcs that are adjacent (i.e.,

Lo ek

have a common endpoint) in G. If the degree of G is bounded
by d, the degree of L(G) is bounded by 2(d-1). If G,y and 62
are isomorphic, then obviously L(Gl) and L(Gz) are. The
following two theorems give a characterization of line graphs.

Theorem (Whitney): Let G and G' be connected graphs with

isomorphic line graphs. Then G and G' are isomorphic unless l

where C, is the graph ¢/§t4

one 1is C3 and the other is Kl,3 3

and Ky 3 is -EEEE .

Proof: See (5] p. 72 or [6]. The line graph of Kl 3 or of
’

Cs 18 € Y

3 3
Theorem (Krausz): H is a line graph iff. the arcs of H

can be partitioned into complete graphs in such a way that

no point lies in more than two of the subgraphs.
Proof: See [5] p. 74 or (7). //

Intuitively, the arcs of a line graph H = L(G) at each
node can be divided into two classes, one associated with each
end of the arc of G which n represents. All the arcs inci-
dent upon the same node of G form a complete subgraph of H.
Given the partition of arcs at each node of H as in Krausz's
theorem, G can be readily constructed. By Whitney's theorem,

for a line graph which is not C3, there is only one way up to

o e S 18 1 T RSSO RSSO M e 1 Ay 3 RO




!
5
%
i

PSS g

isomorphism to partition the arcs at the nodes so as to
satisfy the criteria of Krausz's theorem. There may be
more than one way to partition the arcs at a node into two
classes which form complete subgraphs with the nodes at the
other end of the arcs. However, if the partition at a node
is not correct and we continue to partition the arcs of the
other nodes, then we will reach a node whose arcs cannot

be partitioned so as to satisfy Krausz's criteria because

otherwise Whitney's theorem will be violated. For example,

the graph G: b is the line graph of H:

The triangle (complete graph of three nodes) in G defined
by £1'£2’L3 is associated with node Q of H because 11,22,23
are the three arcs incident upon Q. The complete graph in
G associated with node R of H contains only one node 22.

The correct partitions of the arcs at the nodes of G
are indicated in the above figure; the arcs with the same
labels (a, b, or ¢) belong to the same class. Suppose that
in the partitioning process, the arcs at node ll were erron-

eously divided into the two classes {(£1,£3), (11,25)} and




{((1,22)}. This forces the partition at node £2 to be

{(Zz,tl)}, {(22,23)}. Therefore at node 83, {(83,81),(£3,£5)}
is one class of arcs, {(23,82)}is another class, and the

arc (£3,£4) belongs to neither class. Hence the mistake

made at node Cl is discovered.

A line graph of a labelled graph Yy, denoted by L(Y), is

a labelled graph such that:

(1) the node label set of L(I') is SxS, where S is the
set of node labels of [;

(2) if x represents arc (m,n) of ' and the labels of
m,n are A,B, then node x of L(I') has label either (A,B) or
(B,A).

A line graph of a d-graph ', denoted by L(l), is a

2(d-1)-graph such that the underlying graph of L(I') is a
line graph of U(T), the underlying graph of I' A d-graph T
has many line graphs, since a node of L([I') may be labelled
(A,B) or (B,A) and there are many ways to number the arcs.

The line graph set L(L) of a d-graph language L is the set

of all line graphs of d-graphs in L. In considering line
graphs, the main interest is in the structure of the graph;
therefore we have often ignored the labels of the non-# nodes,
or assumed that all the non-§ nodes have the same label, which
is the same as if the non-# nodes were not labelled. We will

call such d-graphs unlabelled d-graphs.




Proposition 1ll: There exists a deterministic cellular

d-graph recognizer M with a distinguished node that accepts
all (unlabelled) d-graphs whose underlying graphs are line
graphs. Moreover, when M accepts, the arcs at each node

are partitioned into two classes of which one may be empty
and the arcs in each class belong to a complete subgraph.
Proof: M first verifies whether the underlying graph is

Cy and accepts the d-graph if it is. Otherwise, M constructs
a depth-first spanning tree and an ordering of the nodes as
in [4]. Each node's state has a classification component
(al,...,ad) where ait{ﬁ,b,r,N}. Here a, = # if the ith

1

neighbor is a # node; otherwise initially a; = N and it is
changed to b or r later to indicate which class the ith arc
belongs to. M can systematically (according to the ordering
of the nodes) divide the non-# arcs at each node into two
classes (one may be empty) in all possible ways and test
whether they form complete subgraphs as in Krausz's theorem.
The test for complete subraphs is the same as the test for 4
complete graphs in (2], except that now the nodes which are

not at the other ends of the arcs in the same class are ignored.
If any partition of the arcs is successful then M accepts

the d-graph, since its underlying graph is a line graph; and

the classification components at each node tell how the arcs

at each node are partitioned. //




If the d-graph is labelled, and the nodes have labels
in SxS for some label set S, then the partitioniiig of the
arcs at the nodes with labels (81,22) where 21#22 is much
simpler, since the arcs leading to nodes having Kl in their
labels form one class and those leading to arcs having 22

in their labels form another class. If a neighbor does not

have 21 or (2 in its label, then the d-graph is not a line
graph.

We will now show that labelling the arc ends of the line
graph L(I') in a special way will allow a sequential (2d-2)-
graph automaton A on L(I) to simulate a sequential d-graph
automaton F on I'. First let us look at an example:

) o A

L(l): (1,2] [4,2]




The arc ends of L(I') at a node X are numbered so that
the arcs associated with one end of the arc of I' that x
represents are assigned primed numbers, while those associ-
ated with the other end are assigned unprimed numbers.
Suppose A is located at some arc end of I', say arc end
(A,B) near node A. Then F should be on some arc end at node
AB of L(l), and this arc should be associated with node A,
i.e. should be part of the subgraph induced by node A.
Therefore F may be on the second, third, or fourth arc end
at node AB of L(I'). There are two kinds of moves A can make:
(1) A moves to the other end of the same arc. Then F
simply needs to move from an unprimed arc end to a
primed arc end or vice versa at the same node.
(2) A moves to another arc end at the same node, say
from arc end (A,B) to arc end (A,E) at node A. Then
F must move to the first, second, or third arc end
of node AE of L(I'), since these arcs are induced by
node A. This means that F first moves to the arc end
at AB, which would lead to AE, and then moves to the
end near AE. The numbering of the arc ends is
designed so that if (A,E) is the fourth arc end at A
in ', then the arc end at AB that leads to AE is
labelled 4, and F knows exactly how to get to node AE.
If F was at a primed arc end, say the fourth arc end

of AE (this means that A is at arc end (E,A) at node E),




then to simulate A moving to the third arc end at

E, F moves to a primed arc end, the third arc end

of AE, and then moves toward DE.
This numbering of the arc ends of L(I') can always be done
because in the complete subgraph S of L(I') induced by a
node n of I', the nodes of L(I') represent the arcs of I' near
node n. We can give each node of S the number of the arc
end that it represents. These numbers are all distinct.
Thus all the arc ends in S leading toward the node with
number i are all numbered with i. The arc ends at the nodes
of S that do not belong to S will have primed numbers in
order to avoid confusion. Of course, these primed and un-
primed numbers are not the actual arc end numbers of L(T),
but they can be defined implicitly. Moreover, one of the
numbers at the ends of an arc may be primed while the other
is unprimed; as an example, see the arc joining AB and BC
in L(T).

Proposition 12: Let L be a (deterministic) cellular d-

.graph language (or predicate) such that for any d-graph

NNeL, the renumbering of Il is also in L. Then L(L) is a
(deterministic) cellular d-graph language (predicate).
Proof: Let C(M) accept L. Let ﬁ = (r,M,H) be a cellular
(2d-2) -graph acceptor such that it first determines if T is
a line graph by imitating the recognizer in Proposition 1l.

Suppose ' is a line graph; then each node's state has a




classification vector. ﬁ makes sure that each class has at
most d-1 elements, since each complete subgraph is induced
by the arcs at a node of a d-graph. Now & proceeds to impli-
citly assign primed and unprimed numbers to the arc ends as
follows: for each complete subgraph S, ﬁ gives each‘node of

S a distinct number in 2., = {1,...,d}. Hence each node x

d
of ' has a pair of numbers, of which the first one corresponds
to its number in the subgraph specified by the b's in its
classification vector, while the second one corresponds to
that of the r's. Now ﬁ rewrites the classification vector
(al"“'aZd-Z) of a node n into (ml”"’mZd-Z) so that when
the numbers of n's ith neighbor are (cl,cz), if a; = b then
m, = ¢, and if a; = r thenm = cz'. After the non-# ai's
have changed, the other mj's are assigned numbers so that

d-1 of the mj's are distinct and in Zd' the other d-1 are
distinct and in Zd' = {TY v dt k; and mj # n,, mj # né for
any lsjsd-2 where (nl,nz) is the pair of numbers of node n.
The classification vectors implicitly give a numbering of a
d-graph I such that I = L(I).

Let A be a sequential d-graph acceptor that simulates the
cellular d-graph acceptor M = (II,M,H) on I [1]. Now define a
sequential (2d-2)-graph acceptor 2 such that:

(1) If A moves to the other end of the same arc, then X

moves from an unprimed arc end to a primed arc end

or vice versa at the same node.




(2) Suppose A moves to the ith arc end at the same node,
and A is on an arc end with an unprimed number. If
i is not in the node's classification vector then A

need not move; otherwise A moves to the arc end

possessing the number i and then moves to the other
end of that arc.
From the discussion preceding the proposition, 2 on this
assignment of I' simulates A on Il. Therefore K accepts this
assignment of ' iff. A accepts II, i.e. IlEL.
ﬁ can simulate R on I. ﬂ accepts T iff. ; accepts, i.e.

lleL. Since N1 is a d-graph such that I' is its line graph,

and any renumbering of I is also in L, M accepts L(L). Note

that if it is not known whether a renumbering of II is in L,
then we cannot conclude that T£L(L) even though II£L, since
there may be a renumbering of I in L and T is its line graph.

Clearly, & is deterministic if M is and ﬁ is a recognizer
if M is. //

Proposition 13: The line graph set L(L)  of a (deterministic)

cellular d-graph predicate L is a (deterministic) cellular
(2d-2) -graph predicate.

Proot: For any (2d-2) graph I', each node belongs to at
most two complete subgraphs. The ordering of the nodes of T
induces an ordering of the complete subgraphs of I'. There-
fore M of Proposition 12 can be modified to systematically

assign primed and unprimed numbers to the nodes and thus




—— -

T

5.4 Pt i v+ i

i o e

implicitly define different d-graphs with the same under-
lying graph. When 2 accepts, ﬁ accepts. If ; rejects, ﬁ
tries a new assignment of numbers and hence a different
numbering of the d-graph. M rejects when all possible
numberings fail. //

Proposition 14: The line graph set L(L) of a cellular

d-graph language is a nondeterministic cellular (2d4-2)-graph
language.

Proof: Similar to Proposition 13 except that when all the
nodes receive a new pair of number assignments, the cellular

(2d-2)~graph acceptor M' may nondeterministically proceed

as M or may start giving the nodes another number assignment. //




6. Concluding remarks

Cellular d-graph languages have been shown to be closed
under set-theoretic operations such as finite union and
intersection, and geometric operations such as permutation
(of arc end numbering and node labels), concatenation, and
formation of line graphs. Under the set-theoretic operations,
determinism is 2lways preserved. However, under the geometric
operation, determinism is known to be preserved only when
the languages are also predicates.

Many of the common operations on graphs such as join,
product and composition were not considered in this paper,
because there is no bound on the degrees of the resulting
graphs; their degrees depend on the numbers of nodes in the
given graphs. The (geometric) union of two connected graphs
gives a graph that is not connected.

Another geometric operation which preserves connectivity
and boundedness of degree on d-graphs is simple (or elementary)

contraction. A simple contraction of a graph G is obtained by

identifying two adjacent nodes u,v, i.e., by the removal of
u and v and the addition of a new node w adjacent to those
points to which u or v was adjacent. A simple contraction of a

degree d graph has degree =2d. A simple contraction of a

d-graph ' is a 2d-graph whose underlying graph is a simple
contraction of the underlying graph of I'. A simple contraction

of a cellular d-graph language L is a cellular 2d-graph




b G - ” —— s bl s Gvada b pria e el g S ""

language, since if there is a node with more than d non-#
1 neighbors then we can partition its arcs into two sets of

d arcs and treat it as two nodes to test whether the d-graph

is in L. If all nodes have =d non-# neighbors, then one has

to systematically test every partition of the arcs at every

g N A ATl 5l o 2w

node into two sets of d arcs each. The operation of contrac-

vt
i |
it |

3 tion, meaning a sequence of elementary contradictions, can

d
}
&
i
3

{
\ !
|
|
|

produce graphs of arbitrarily high degree.




References

l.

A. Wu, Cellular graph acceptors, TR-599, Computer
Science Center, University of Maryland, College Park,
MD, November 1977.

A. Wu, Cellular graph acceptors, 2, TR-621, Computer
Science Center, University of Maryland, College Park,
MD, December 1977.

A. Wu, Cellular graph acceptors, 3, TR-648, Computer
Science Center, University of Maryland, College Park,
MD, April 1978.

A. Wu, Cellular graph acceptors, 4, TR-667, Computer
Science Center, University of Maryland, College Park,
MD, June 1978.

F. Harary, Graph Theory, Addison-Wesley, Reading,
Massachusetts, 1969.

H. Whitney, Congruent graphs and the connectivity of
graphs, Amer. J. Math. 54, 1932, pp. 150-168.

J. Krausz, Démonstration nouvelle d'un théoréme de
Whitney sur les réseaux, Mat. Fiz. Lapok 50, 1943,
pPp. 75-89.




UNCLASSIFIED

CLASSIFICATION OF THIS PAGE (When Date Entered)

ORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

5. JYPE OF REPORT & PERIOD COVERED

LLULAR PH ACCEPTORS, 5:
F CELLULAR d-GRAPH LANGUAGES
= z B

o

éép
e

i e

SURE PROPERTIES
= 6

nterim y—»ﬁDt\ /
- R

(y

8. CONTRACT OR GRANT NUMBER(s)

b/
Vardsr=77-3271 :[

9. PERFORMING RGAN!ZATION NAME AND ADDRESS
University of Maryland
Computer Science Center
College Park, Maryland 20742

v

10. PROGRAM ELEMENT, PROJECT, TASK
REA &

. CONTROLLING OFFICE NAME AND ADDRESS

Air Force Office of Scientific Research/NM (i;
Bolling AFB, Washington, DC 20332

29

. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Oftice)

1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of this Report)

“\‘

. DISTRIBUTION ST, AENT (of :' - abstract ent

ock 20, if different from Report)

. SUPPLEMENTARY TES

KEY WORDS (Continue on reverse side if necessary and identify by block number)

Cellular Automata
Formal Languages
Closure Properties

GraphiL

20. ABSTRAC?&CoMMuO on reverse side If necessary and identify by block number)

Cellular d-graph languages are shown to be closed under set theoretic
operations, including finite union and intersection; and under'"SEometric
operations, including permutation of arc end numbering, concatenation,
closure, and formation of line graphs. Determinism is preserved under the
set-theoretic operations; but under the geometric operations, determinism is
known to be preserved only when the languages are also predicates.

)

q \x V.
FORM (4 7
DD | jan7s 1473 UNCLASS IF IED
SEFCIHRITY M ACRIFIFATIAN AF TUIC DAAE "TNhan Nate Caracad




